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Recently, we proposed a new model of DNA sequence evolution (Arqu+s and Michel. 1990b. Bull. 
math. Biol. 52, 741-772) according to which actual genes on the purine/pyrimidine (R/Y) alphabet 
(R=purine=adenine or guanine, Y=pyrimidine=cytosine or thymine) are the result of two 
successive evolutionary genetic processes: (i) a mixing (independent) process of non-random 
oligonucleotides (words of base length less than 10: YRY(N) 6, YRYRYR and YRYYRY are so far 
identified; N = R or Y) leading to primitive genes (words of several hundreds of base length) and 
followed by (ii) a random mutation process, i.e. transformations of a base R (respectively Y) into 
the base Y (respectively R) at random sites in these primitive genes. Following this model the 
problem investigated here is the study of the variation of the 8 R/Y codon probabilities R R R , . . . ,  
YYY under random mutations. Two analytical expressions solved here allow analysis of this 
variation in the classical evolutionary sense (from the past to the present, i.e. after random 
mutations), but also in the inverted evolutionary sense (from the present to the past, i.e. before 
random mutations). Different properties are also derived from these formulae. Finally, a few 
applications of these formulae are presented. They prove the proposition in Arqu+s and Michel 
(1990b. Bull. math. Biol. 52, 741-772), Section 3.3.2, with the existence of a maximal mean number 
of random mutations per base of the order 0.3 in the protein coding genes. They also confirm the 
mixing process of oligonucleotides by excluding the purine/pyrimidine contiguous and alternating 
tracts from the formation process of primitive genes. 

1. Introduction. Several models of purine/pyrimidine (R/Y) code structures 
were proposed (R = purine --- adenine or guanine, Y = pyrimidine = cytosine or 
thymine). Barrell and Clark (1974) showed that the anticodon in transfer RNA is 
bordered by an R in the 3' location and by two Y in the 5' location. Based on this 
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anticodon region structure, and on the translation model developed by Woese 
(1970), Crick et  al. (1976) proposed that the primitive coding genes are 
constituted of codons of the type RRY, with RNY (N = R or Y) as a less likely 
alternative. These concepts were again considered by Eigen and Schuster (1978) 
who favoured codons of the type RNY, giving more symmetry between R and Y 
and between the two strands. A gene statistical analysis by Shepherd (1981) and 
Smith et  al. (1983) supports the RNY codon model. R/Y bases are also involved 
in the geometry of the DNA double helix, which is implied in the regulation of 
genes. For example, R-Y steps open preferentially their base planes towards the 
major groove of the B-DNA double helix, while Y-R steps towards the minor 
groove (Dickerson and Drew, 1981). The R/Y contiguous and alternating tracts 
which will be used as applications of the formulae can strongly modify the B- 
DNA double helix (see the Discussion). 

Recently, we proposed a new model of DNA sequence evolution according to 
which actual genes on the R/Y alphabet are the result of two successive 
evolutionary genetic processes (Arqu6s and Michel, 1990b). 

The first genetic process is the mixing of non-random oligonucleotides (words 
of base length less than 10) leading to genes (words of base length of several 
hundreds) called primitive genes. It was proved in particular that: (i) The mixing 
is independent by using initially a Markov mixing. (ii) Three oligonucleotides, 
YRY(N)6, YRYRYR and YRYYRY (so far identified), are involved in this 
mixing. (iii) The primitive genes resulting from this oligonucleotide mixing have 
the main non-random statistical properties observed in the actual genes on the 
R/Y alphabet, in particular the periodicities modulo 2 and 3 (Arqu6s and Michel, 
1990a) and the preferential occurrence of the motif YRY(N)6YRY (Arqu6s and 
Michel, 1987a, 1987b). The modification of a specified base (R or Y), a length or a 
probability in the mixing of one of these three oligonucleotides leads to primitive 
genes without the genetic properties mentioned above. Note that the RNY 
codon model is a particular case of the oligonucleotide mixing model (Arqu6s 
and Michel, 1990b, p. 763, Section 3.3.3). However, the non-random properties 
in the primitive genes occur with a higher probability compared to the actual 
genes. This is the reason why a second genetic process must be added after the 
mixing process (Arqu6s and Michel, 1990b, Sections 1 and 3.3.2). 

The second genetic process is related to random processes, random insertions 
and deletions ofnucleotides (Arqu6s and Michel, 1990b, Section 1, point 2; 1992), 
but mainly random mutations, i.e. transformations of a base R (respectively Y) 
into the base Y (respectively R) at random sites in the primitive genes (Arqu6s and 
Michel, 1990b, Section 1, point 2, Section 3.3.2). Indeed, the mixing process acts 
on the relative values in the simulated curves (on the curve shape), i.e. it leads to 
non-random properties. However, the random mutation process acts on the 
absolute values in the simulated curves (no effect on the curve shape: random 
mutations are a noise in terms of signal processing), i.e. it cannot lead to non- 
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random properties. The mutation process is a classical evolutionary genetic 
process and well accepted as it is retrieved in several molecular theories of 
evolution (e.g. Kimura, 1987; Nei, 1987). Nevertheless, we had proposed in 
Arqu6s and Michel (1990b, Section 3.3.2) the existence of a maximal random 
mutation rate of the order 1/2 per specified base (R or Y), however, without proof. 

The problem investigated here is the study of the variation of the eight R/Y 
codon probabilities R R R , . . . ,  YYY under random mutations. Two analytical 
expressions solved here allow the analysis of this variation in the classical 
evolutionary sense (from the past to the present, i.e. after random mutations), 
but also in the inverted evolutionary sense (from the present to the past, i.e. 
before random mutations). Different properties are also derived from these 
formulae. Finally, a few applications of these formulae are presented. They 
prove the proposition in Arqu6s and Michel (1990b, Section 3.3.2) with the 
existence of a maximal mean number of random mutations per base of the 
order 0.3 in the protein coding genes. They also confirm the mixing process of 
oligonucleotides by excluding the R/Y contiguous and alternating tracts from 
the formation process of primitive genes. 

2 .  M e t h o d  a n d  R e s u l t s .  

2.1. Recall o f  the Poisson even~odd distribution associated with random 
mutations. Let S be a sequence on the alphabet {R, Y} (R = purine = adenine 
or guanine, Y=pyrimidine=cytosine or thymine). This sequence S is 
subjected to random mutations, i.e. transformations of a base R (respectively 
Y) into the base Y (respectively R) at random sites s in S. Let x be the mean 
number ofrandorn mutations per base site (per base) between times 0 and t (see 
also Scheme 1 below), i.e. x=2t ,  where 2 is the mean number of random 
mutations per base site per unit of time. 

Under classical assumptions (Feller, 1968, p. 447; Kimura, 1987, p. 69; Nei, 
1987, p. 40; Haldane, 1927, p. 839; Haldane, 1990, appendix) the counting 
process {N(t), t >~ 0}, giving the number of random mutations per base site in 
the time interval [0, t], is a Poisson process with rate 2 > 0, i.e. the probability 
P,(t) of a base site to be subjected to n random mutations in the time interval 
[0, t] is: 

P~(t) = P(N( t )  = n) = e 
X ?1 

- z t  O't)  ~ _ e - ~  _ _  

n!  n! 

Therefore, the probability of a base site to have changed, i.e. R ~ Y  or Y ~ R  
(respectively, not to have changed, i.e. R ~ R  or Y ~ Y )  after x random 
mutations per base site on average in the time interval [0, t] is the probability of 
this base site being subjected to an odd (respectively even) number of random 
mutations, i.e.: 
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1 - - e  - 2 x  1 + e  - 2 x  
(9(X)= 2 P2k+l(t) = respectively g(x)= ~ P2k(t) 

a~>o 2 ' 2 k~>0 

These two equations obtained on the alphabet {R, Y} are similar to those 
obtained on the alphabet {A, C, G, T} with the one-parameter model (a unique 
rate of mutations; Jukes and Cantor, 1969) and with the two-parameter model 
(a rate of transitions and a rate of transversions; Kimura, 1980). 

2.2. Analytical expression of the codon probability after random 
mutations. The codon probability after x random mutations per base (at time 
t) can be obtained from the codon probability before the mutation process (at 
time 0) (see Scheme 1), m being the unknown number of random mutations per 
base between the times 0 and today: 

Time l [ = 
0 t today 

Mean number 
of mutations 

per base 
) I - -  
0 x m 

Codon [Pj(O)] 1.<j.< s [Pi(x)]l<.i<.s 
probability 

Scheme 1. 

By convention the indexje  [1, 8] represents the codons R R R , . . . ,  YYY in 
alphabetical order. Let Pj(O),j c [1, 8], be the probability of the codonj  being in 
a given sequence before the mutation process. Let Pi(x), iE[1, 8], be the 
probability of the codon i being in a given sequence after x random mutations 
per base on average; depending on the context, we note indifferently Pl(x) or 
PRRR(X), etc. Let J ( j ,  i) be the number of identical bases in the same codon site 
between the codons i and j. Then Pi(x) can be expressed as a function of 
[Pj(0)] x ~<~.< s" Indeed: 

8 

Pi(x) = ~ Pj(0) x P (codon j~codon  i after x random mutations per base) 
j = l  

8 
= ` - J ( j ' i )  

j = l  

8 
1 = g ~ Pj(0) (1 +e-2X)J(J'i)(1 -e -Zx)  3-jO'i) 

j = 1  

(1) 

, ' (  ) = ~  ~ ~ Pj(O) (l+e-2X)k(1--e-2~) 3-k 
k = 0 j / ,~( j , i )  = k 
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2.2.1. Properties of P~(x). Property 1: The formula giving Pi(x) is true for a 
codon frequency Pi(0), computed either in a modulo 3 frame (obvious) or 
without frame. Indeed, the codon frequency computed without frame is the 
mean of the codon frequencies computed in the 3 modulo 3 frames. Therefore, 
the formula P~(x) remains true in the "without frame" case by linear 
combination of the three formulae P~(x), which are true in all three frames. 
Note: According to the definitions in Section 2.2 a codon is any trinucleotide 
(the term codon is used for convenience). In biology, this definition is too 
general and the term codon is restricted to a trinucleotide in the open reading 
frame. 

Property 2: The codon frequency computed without frame leads to the 
following property with the codons RRY, YRR, RYY and YYR: PRRv(X)= 
PYRR(X) and PRvv(x)=PYvR(X), whatever the mean number x of random 
mutations per base; in particular PRRV(0)=PvRR(0) and PRvv(0)=PvvR(0). 
Indeed, in an infinite sequence the codon YRR (respectively RYY) preceding a 
series of R (respectively Y) can be bijectively associated with the codon RRY 
(respectively YYR) following this series of R (respectively Y) (see the scheme 
below for the case of a series of R). 

. . . [ ~ R R R . . . R R R ~ . . .  

Property 3: If x and z are mean numbers of random mutations per base, then 
(P , (x ) )  (z) = P,(x + z). 

2.2.2. Two applications of the formula Pi(x) in tracts. The formula Pi(x) 
is applied in the purine/pyrimidine contiguous and alternating tracts as they 
are currently studied experimentally. Indeed, these two basic tracts are 
associated with important biological functions described in the Discussion. 
The results of these applications are presented below and commented on in the 
Discussion. 

2.2.2.1. Application 1: Purine/pyrimidine codon probability in the purine 
contiguous tract after random mutations. If the sequence S is the purine 
contiguous tract before the mutation process, then PRRR(0)= 1 and Pj(0)= 0 if 
jva 1 (all codons are of type RRR). Then: 

Pi(x) = I(1 + e - 2x)J(1,i)(l - -  e-  2x)3 -J (1  ,i) 

leading to: 

P , . . ( x )  = ~(1 + e -  ~x)~ 

PRRY(X) = PRYR(X) = PYRR(X) 
=1(1 + e -  2x)2(1 _ e  -2x) 

(curve C1 in Fig. la) 

(curve C2 in Fig. la) 
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gRyy(X) = PyRy(X)=  PyyR(X) 
= } ( l + e - Z x ) ( 1 - e - E x )  2 (curve C3 in Fig. la)  

Pvvv(X)=}(1-e -Ex)  3 (curve C4 in Fig. la). 

As before the muta t ion  process the codon probabili ty in the purine 
cont iguous tract [i.e. P R R R ( 0 )  = 1 ]  is identical whatever the frame, the eight 
codon  probabilities Pi(x) after r andom mutat ions  are also identical whatever 
the frame [because they are obtained from the same formula (1) in Section 2.2] 
and equal to the probabilities Pi(x) computed  without  frame. The equalities 
ment ioned above, PRRy(X)=PvRR(X) and PRvv(x)=PyyR(X), are the conse- 
quence of property 2 in Section 2.2.1 (verified: curve C2 and curve C3 in 
Fig. la). 

Remark. By exchanging the complementary  bases R and Y the formulae in 
the pyrimidine contiguous tract remain the same as the ones in the purine 
contiguous tract. 

2.2.2.2. Application 2: Purine/pyrimidine codon probability in the purine/  
pyrimidine alternating tract after r andom mutat ions.  If the sequence S is the 
purine/pyrimidine alternating tract before the muta t ion  process then PRVR(0) = 
PVRV(0) = 1/2 and Pi(0) = 0 otherwise (all codons are of type RYR and YRY) 
and J ( 6 ,  i )=  3 - J ( 3 ,  i) for all i (3 representing RYR and 6, YRY). Then: 

Pi(X) = ~-6[(1 + e - 2 x )  J ( 3 ' i ) ( 1  - e - 2x )  3 - J(3,i) _~_ (1 + e - 2~) 3 - J ( 3 , i ) ( 1  - e - 2x )  d t (3 ' i ) ]  

leading to: 

PRvR(X)=PvRy(X)=~(1 + 3 e  -4x) (curve C1 in Fig. lb) 

PRRR(X) = PRRy(X) = PRyy(X) = PYRR(X) = Pvw(x)  = Pvvy(X) = ~(1 -- e-4x) 

(curve C2 in Fig. lb). 

As before the muta t ion  process the codon probabilities in the purine/pyrimi- 
dine alternating tract [i.e. PRVR(0) = PVRV(0) = 1/2] are identical whatever the 
frame, the eight codon probabilities P~(x) after r andom mutat ions  are also 
identical whatever the frame and equal to the probabilities P~(x) computed  
without  frame. The equalities ment ioned above, PRRy(X)=PYRR(X) and 
PRvv(X) = PVvR(X), are the consequence of property 2 in Section 2.2.1 (verified: 
curve C2 in Fig. lb). 

2.3. Analytical expression of the codon probability before random 
mutations. The problem of Section 2.3 is the inverted problem of Section 2.2. 
Let m (respectively x) be the mean number  of r andom muta t ions  per base 
between the times 0 and today (respectively t) (see Scheme 2). Let y be the mean 
number  of r andom mutat ions  per base between times t and today, i.e. m = x + y. 
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In the previous problem of Section 2.2 the reference time is the time 0 (before 
the mutation process), while in the inverted problem the reference time is today 
(after the mutation process). 

Time I 
0 

Mean number ~- 
of mutations 0 

per base ] 
o 

Codon Pi(O) 
probability 

. . . . . . . . . . . . . . . . . . . . . .  . 

t today 

m 

x = m - - y  

y 0 

P~(x) = P i ( m -  y ) =  Q i ( y )  Pi(m) = (Pi(m - y ) )  (y) = Qi(O) 

Scheme 2. 

Therefore, the inverted problem consists of inverting the equation in 
Section 2.2, giving Pi(x) as a function of Pi(O), and to express Qi(y)= Pi(m-y) 
as a function of Qi(0)= Pi(m), i~ [1, 8] representing the alphabetical order of 
codons R R R , . . . ,  YYY [depending on the context, we note indifferently QI(Y)  

or QRRR(Y), etc.]. The solution obtained is: 

8 

Qi(Y) = 
j = l  

Pj(m)8(- y)J~ y)3 -.~(j,i) 

with: 

1 + e 2r 
g ( _ y ) -  _ _  

2 

1 - -  e 2r 
O ( - y ) -  - -  

2 

leading to: 

3( ) 
Q~(y)=~- ~ ~ Pj(m) (l+e2y)k(1--e2y)3-k. 

k = 0 j / J ( j , i )  = k 

Proof. The formula Qi(Y) can be proved in two ways: 

(i) by inversion of the matrix (g(x)J(J'i)(9(x) 3 -J(J'i))l ~i, j~8 associated with 
formula (1)in Section 2.2; 

(ii) by generalization of property 3 in Section 2.2.1 to negative numbers, i.e. 
by replacing x by m and z by - y .  �9 



1032 D.G. ARQUI~S AND C. J. MICHEL 

2.3.1. Properties of Qi(Y). 
p,(x). 

The properties of Q~(y) are similar to those of 

(1) The formula Qi(Y) is true for a codon frequency Pi(m) computed either in 
a modulo 3 frame or without frame. 

(2) The codon frequency computed without frame leads to the following 
property with the codons RRY, YRR, RYY and YYR: QRRY(Y) = QYRR(Y) 
and QRvv(Y)=QvvR(Y), whatever the mean number y of random 
mutations per base. 

(3) If y and z are mean numbers of random mutations per base, then 
(Qi(Y)) (z) = Qi(y + z). 

2.3.2. Applications of the formula Q~(y) in eukaryotic protein coding 
genes. The formula Q~(y) is particularly interesting as the actual codon 
frequencies P~(m) are known and can be computed with gene databases. 
Contrary to the formula Pi(x), which converges as expected towards the 
random value 1/8 =0.125 when x increases (a consequence of the negative 
exponentials and see e.g. Figs la-b),  the formula Qi(Y) does not converge when 
y increases (see e.g. Fig. 2). However, the vector (Q~(y))l<,i<,8 must remain a 
vector of probability, i.e. the eight values Q~(y) must be bounded between 0 and 
1 (and of sum 1). In summary, the formula Qi(Y) gives the codon probability 
before y random mutations per base and the condition 0 ~< Q~(y)~< 1 for i in 
[1, 8] implies a maximal mean number of random mutations per base. 

The mean codon frequencies in eukaryotic protein coding genes computed in 
the open reading frame (modulo 3 frame) of a population from the EMBL 
database containing 13,169 available genes (6718 kb), lead to the following 
Pi(m) values: PRRR(m)= 0.1772; PRRY(rn)= 0.1593; PRYR(m)= 0.1067; PRYv(m)----- 
0,1561; PYRR(rn)=0.0732; PVRy(m)=0.0923; PyyR(m)=0.1028; Pvvy(m)--- 
0.1324. The formula Q~(y) applied with these P~(m) values (Fig. 2) leads to a 
maximal mean number of random mutations per base equal to 0.27. Indeed, 
the decrease of the probability of the codon YRR reaches 0 when y = 0.27. This 
result is commented on in the Discussion. 

2.3.3. Properties of Pi(x) and Qi(Y). Pi(x) = Qi(y) if x + y = m and 0 ~< x, 
y<~m (see Scheme 2). The formula Pi(x) gives the evolution of the codon 
probabilities when we go from the past to the present and when the number of 
random mutations increases from 0 to m. Pi(x) can be obtained either exactly by 
analytical expression or approximately by computer simulation (simulation of 
random mutations in simulated sequences). The formula Qi(y) gives the 
inverted evolution of the codon probabilities when we go back in time and 
when the number of random mutations decreases from m to 0. The main 
difference with Pi(x) lies in the fact that Q~(y) can only be obtained by analytical 
expression and not by computer simulation: it is not possible to simulate 
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o 'u 
o 

0.05 

/ 

Cl 

C2 

i i I i i i i I I i i i 

0.5 1 
I , , , , I 

1 . 5  2 

After x random mutations per base in the R contiguous tract 

0 0.5 1 1.5 2 

y 
After x random mutations per base 

in the purine/pyrimidine alternating tract 

Figure 1. Purine/pyrimidine codon probability Pi(x) in (a) the purine contiguous 
tract and (b) in the purine/pyrimidine alternating tract after x random mutations 
per base, x e [0, 2]. (a) Curve C 1 represents the codon RRR; curve C2 the codons 
RRY, RYR and YRR; curve C3 the codons RYY, YRY and YYR; curve C4 the 
codon YYY. Curve C2 first increases up to the maximum 22/33=0.1481 (value 
greater than the random one) reached at x = (Log 3)/2 = 0.5493 random mutations 
per base, then decreases. (b) Curve C1 represents the codons RYR and YRY; curve 
C2 the codons RRR, RRY, RYY, YRR, YYR and YYY. The curves converge as 

expected towards the random value 0.125 (horizontal dash line). 
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RYY 
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h 
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I . . . .  | . . . .  , , , , �9 , . . . .  , . . . .  ' 5 '  

0 0.05 0.i 0.15 0.2 0.2 

Before y random mutations per base 

in eukaryotic protein coding genes 

Figure 2. Purine/pyrimidine codon probability Qi(Y) in eukaryotic protein coding 
genes (computed in open reading frame) before y random mutations per base, 
ye[0, 0.27]. The probability QYRR(Y) is equal to 0 when y=0.27; therefore, the 
maximal mean number of random mutations per base in eukaryotic protein coding 

genes is 0.27. 

inverted mutations as the site and the order of the previous mutations are 
not known. 

3. Discussion. The analytical expression of the purine/pyrimidine codon 
probability after and also before random mutations (inverted evolutionary 
process, i.e. from the present to the past) is solved in this paper. Different 
properties are also derived from these formulae. The formulae obtained are 
simple and general enough to be applied in a series of situations. In particular, 
the formulae are independent of the nucleotide ordering in the sequence, e.g. 
they remain true for a codon frequency computed in a modulo 3 frame or not 
(see properties 1 in Sections 2.2.1 and 2.3.1). Finally, a few applications of these 
formulae were presented and are commented below. 

Two applications of the formula giving Pi(x) deal with the purine/pyrimidine 
(R/Y) contiguous and alternating tracts. These tracts were chosen as an 
increasing number of experimental studies (the use of the experimental method 
called PCR: Polymerase Chain Reaction; Mullis and Faloona, 1987; Erlich et 
al., 1991; Weber and May, 1989) show that these two basic tracts (also called 
microsatellites) are associated with important biological functions. Mainly 
four biological functions of the R/Y contiguous tracts were identified, 
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depending on their location in gene subregions. In intergenic regions these 
tracts play a structural role in chromosome or nucleosomal organization 
(Beasty and Behe, 1988), in exons, a coding function, in introns, an RNA 
splicing function (Keller and Noon, 1984) and in promoter regions, a 
regulatory function of gene expression (Larsen and Weintraub, 1982). The R/Y 
alternating tracts have the potential for forming Z-DNA (Wang et al., 1979; 
Konopka et al., 1985), which may play a role in gene regulation (Hamada et al., 
1984), in genetic recombination (Treco and Arnheim, 1986) and in condensing 
and decondensing DNA (Stallings et al., 1991). After the identification of a 
function for a tract, a classical experimental approach consists of mutating the 
tract in order to quantify its function. For example mutations in the R 
contiguous tracts of promoter regions allow to study the sensitivity to single 
strand nucleases and the unwound state of the DNA structure which is involved 
in gene expression (e.g. Evans and Efstratiadis, 1986; Hanvey et al., 1988). 
Mutations in the Y contiguous tracts located in the 3' splice site in mammalian 
introns enable to analyse their splicing efficiency (e.g. Wieringa et al., 1984; 
Ruskin and Green, 1985). Mutations in the R/Y alternating tracts allow the 
characterization of the Z-DNA form (e.g. Ellison et al., 1985 ). On the other hand, 
evolutionary mutations (in contrast to the experimental mutations) are an 
important cause of the tract polymorphism (length, number of repeats and 
intensity of mutations; Hamada et al., 1984; Tautz and Renz, 1984; Jeffreys et al., 
1988; Weber, 1990). However, the quantification of this tract polymorphism 
remains open (e.g. Weber, 1990). The random mutation model developed here 
may find solutions to these tract mutation problems. The formula Pi(x) shows 
that only the probability of RRR decreases in the R contiguous tract after 
random mutations (or YYY in the Y contiguous tract; application 1 in 
Section 2.2.2 and Fig. la). Therefore, the lowering of the biological function in 
mutated R contiguous tracts might be related to their content in RRR (or in more 
general motifs containing RRR), decreasing according to (1 + e-2x)3/8 (x being 
the mean number of random mutations per base). The lowering of the biological 
function in mutated R/Y alternating tracts would be related to their content in 
RYR and YRY decreasing according to (1+3e-4X)/8 (application2 in 
Section 2.2.2 and Fig. lb). On the other hand, the formula Pi(x) may also be used 
to precisely date the mutated tracts and to construct phylogenetic trees. Finally, 
it should be noted that even with these two simple sequences the probability 
curve form for some codons cannot be intuitively predicted, in particular the 
surprising form of the curve C2 in Fig. la. 

The application of the formula Q~(y) in eukaryotic protein coding genes 
shows that the maximal mean number of random mutations per base is equal to 
0.27 (Section 2.3.2 and Fig. 2). The formula Qi(Y) applied in protein coding 
genes ofprokaryotes and viruses leads for both taxonomic groups to a maximal 
value equal to 0.25 (data not shown). Even if the frequency for some R/Y 
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codons is very different from eukaryotes to prokaryotes or viruses, protein 
coding genes have a maximal mean number of random mutations per base of 
the order 0.3. This result proves the proposition in Arqu~s and Michel's 
(1990b) Section 3.3.2 stating the existence of a maximal random mutation rate. 
The order of 1/2 given is close to 0.3. Two additional reasons concerning the 
stability of this result are briefly discussed. First, the R/Y codon frequencies are 
computed in a population of several thousands of protein coding genes. Due to 
the law of large numbers (Arqu6s and Michel, 1990b, Section 2.3.3) these mean 
frequencies are stable from a statistical point of view: the codon frequency 
difference between two (or even three) successive EMBL releases is less than 
0.1% (data not shown). Second, this codon frequency difference has been tested 
in the case of eukaryotic protein coding genes. For the eight R/Y codons this 
frequency difference is stable (less than 1%) up to 0.6 back random mutations 
per base, then it exponentially increases (data not shown). Therefore, the 
formula Qi(y) is stable for a number of random mutations per base, which 
greatly exceeds the maximal value 0.3. The maximal value of 0.3 concerns a 
mean number of random mutations per base, i.e. the case where all R/Y bases in 
the primitive genes are equiprobably mutated. However, as mentioned in 
Arqu6s and Michel (1990b), Section 3.3.2, some R/Y sites can have a higher 
(and also lower) mutation rate compared to the average 0.3. Figure 2 also 
shows that the codon frequencies were not random in the past as they diverge 
from the random value 0.125. The codon YRR occurred with the lowest 
frequency (also verified with the protein coding genes of prokaryotes and 
viruses: data not shown), suggesting that primitive genes would have contained 
stop codons only rarely (YRR codes in particular for the three stop codons). 

The R/Y codon frequencies are completely different whether they are 
computed in the open reading frame (ORF), in frame 1 (ORF shifted from one 
base) or in frame 2 (ORF shifted from two bases). For example, with the 
eukaryotic protein coding genes the frequency of the codon YRR in the ORF is 
the lowest, 0.0732, but its frequency in frame 1 is equal to 0.1311 and in frame 2 
to 0.1689; the frequency of the codon YYR in the ORF is equal to 0.1028, but its 
frequency in frame 1 is equal to 0.1647 and in frame 2 to 0.0949 (see 
Section 2.3.2; the data with frames 1 and 2 are not shown), etc. This codon 
frequency difference in frame is retrieved with all codons and with protein 
coding genes of other taxonomic groups: prokaryotes, viruses, chloroplasts 
and mitochondria (data not shown). This classical observation leads to an 
important result about primitive genes (genes before the mutation process in 
our model ofgene evolution). Indeed, as random mutations in R/Y contiguous 
and alternating tracts lead to codon frequencies that are identical whatever the 
frame (see Sections 2.2.2.1 and 2.2.2.2), these tracts could not have been the 
formation process of primitive genes. Therefore, this random mutation model, 
excluding the R/Y contiguous and alternating tracts from the formation 
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process of primitive genes, is in agreement with the mixing model of 
oligonucleotides being at the origin of primitive genes (the classical proof 
consisted of verifying that the R/Y contiguous and alternating tracts cannot 
lead to the non-random statistical properties observed in the actual genes and 
mentioned in the Introduction). 

The formulae Pi(x) and Qi(Y) can be easily generalized to motifs different 
from the codon, i.e. to motifs of any base length. Otherwise, these formulae are 
simple enough to be directly used. However, we are currently implementing 
these analytical expressions and their generalization in the software AGE 
(Analysis of Gene Evolution) (Arqu6s et al., 1992). 

Note Added in Proof. The analytical expressions of the probability of motifs of 
any base length on the genetic alphabets {R, Y} and {A, C, G, T} and on the 
protein alphabet after and before random mutations have been derived 
(Arqu6s and Michel, submitted). 

We thank Dr Nouchine Soltanifar and a Referee for their advice. 
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