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The autocorrelation function analysing the occurrence probability of the i-motif
YRY(N);YRY in genes allows the identification of mainly two periodicities modulo
2, 3 and the preferential occurrence of the motif YRY(N)sYRY (R = purine = adenine
or guanine, Y= pyrimidine =cytosine or thymine, N=R or Y). These non-random
genetic statistical properties can be simulated by an independent mixing of the three
oligonucleotides YRYRYR, YRYYRY and YRY(N)s (Arques & Michel, 19905). The
problem investigated in this study is whether new properties can be identified in
genes with other autocorrelation functions and also simulated with an oligonucleo-
tide mixing model.

The two autocorrelation functions analysing the occurrence probability of the /-
motifs RRR(N);RRR and YYY(N),YYY simultaneously identify three new non-
random genetic statistical properties: a short linear decrease, local maxima for i=3[6]
(i=3,9,etc) and a large exponential decrease. Furthermore, these properties are
common to three different populations of eukaryotic non-coding genes: 5’ regions,
introns and 3’ regions (see section 2).

These three non-random properties can also be simulated by an independent mix-
ing of the four oligonucleotides R®, ¥®, RRRYRYRRR, YYYRYRYYY and large
alternating R/Y series. The short linear decrease is a result of R® and Y*, the local
maxima for i=3[6], of RRRYRYRRR and YYYRYRYYY, and the large exponential
decrease, of large alternating R/ Y series (section 3).

The biological meaning of these results and their relation to the previous oligo-
nucleotide mixing model are presented in the Discussion.

1. Introduction

Non-random genetic statistical properties were able to be identified because a particu-
lar statistical function, termed the autocorrelation function, was defined (Arqués &
Michel, 1987b; generalized below) in order to analyse in gene populations the occur-
rence probability of two identical trinucleotides T separated by any i bases N, i.e.
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the occurrence probability of i-motifs T(NV),T, T being a trinucleotide on the alphabet
{R, Y} (R=purine=adenine or guanine, Y= pyrimidine =cytosine or thymine and
N=R or Y). This autocorrelation function is noted T-function. Indeed, the YRY-
function, i.e. the autocorrelation function analysing the occurrence probability of the
i-motif YRY(N);YRY in genes, allows us to identify the two periodicities modulo 2,
3 and the preferential occurrence of the motif YRY(N)sYRY (Arqués & Michel,
1987a, b; 19904, b).

The biological meanings of these properties were given in detail in our previous
study (Arqués & Michel, 1987b; 1990b). Briefly, the periodicity modulo 2 reveals a
gene with alternating R/Y series, the periodicity modulo 3, a gene with an open
reading frame, and the preferential occurrence of the motif YRY(N)¢YRY, a “code”
of the DNA helix pitch.

Although unexpected, we have recently proved that these non-random properties
can be simulated by a mixing of the three oligonucleotides YRYRYR, YRYYRY and
YRY(N)s, i.e. with a concatenation of words of a few (<ten) letters (Arqués &
Michel, 19905). Furthermore, this oligonucleotide mixing has mathematically been
demonstrated to be independent (by first using a Markov mixing which is a more
general mixing). Therefore, the independent mixing only depends on the probabilities
associated with the three oligonucleotides. Finally, it was shown that random nucleo-
tide mutations, i.e. random transformations of a nucleotide into another (in our case
R—Y and Y—R), cannot lead to a non-random property (mutations act on the
absolute values of the T-function but not on its relative values). By giving a biological
meaning to these mathematical/statistical results, a model of DNA sequence evolu-
tion has been proposed. Briefly, according to this model, genes first derive from a
mixing of primitive oligonucleotides (root of the phylogenetic tree since evolution is
commonly accepted to be divergent overall) as an independent mixing is the simplest
of the possible mixings. Then, evolution led to the actual gene diversity (leaves of
the phylogenetic tree) mainly by random nucleotide processes, such as mutations
(see reviews in Kimura, 1987; Nei, 1987), insertions and deletions (a genetic process
termed RNA editing which was recently identified; Benne et al., 1986; Benne, 1989
Simpson, 1990; Cech, 1991), specifications (transformations of a nucleotide {R, Y}
into a nucleotide {A, C, G, T} so that R—»4 or R—G and Y- C or Y—T; Arqués
& Michel, 19905: 742) etc. In other words, the oldest evolutionary process is the
independent mixing of only a few types of primitive oligonucleotides, followed later
on mainly by random nucleotide processes. These two successive steps are the un-
avoidable consequence in that random mutations cannot explain the non-random
properties existing in genes. We refer the reader to Arqués & Michel (199056) for the
mathematical proofs and the biological concepts.

These results further explain investigations to identify new properties with
T-functions other than the YRY-function as YRY represents only one among eight
of the R/Y trinucleotides (see also Arqués & Michel, 1990b: 766, lines 2-3). The
RRR- and YYY-functions, i.e. the autocorrelation functions analysing the occurrence
probability of the /-motifs RRR(N);RRR and YYY(N),YYY in eukaryotic non-
coding genes (5 and 3' regions, introns), simultaneously identify three new non-
random properties: a short linear decrease, local maxima for i=3[6] and a large
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exponential decrease (section 2). Furthermore, these properties can also be simulated
by an independent mixing of the four oligonucleotides R®, Y%, RRRYRYRRR,
YYYRYRYYY and large alternating R/Y series [for example, (RY)s]. The short
linear decrease is a result of R® and Y®, the local maxima for i=3[6], of RRRYR-
YRRR and YYYRYRYYY, and the large exponential decrease, of large alternating
R/ Y series (section 3).

2. Identification of New Non-random Statistical Properties Common to Different
Populations of Eukaryetic Non-coding Genes

2.1. INTRODUCTION

The problem investigated in this section is whether new properties can be identified
with T-functions different from the YRY-function. The RRR- and YYY-functions
will simultaneously identify the same three non-random properties in three different
populations of eukaryotic non-coding genes. The trinucleotides RRR and YYY are
“independent”, RRR is also “independent” of YRY while YYY can only overlap
YRY with one base. Therefore, the results obtained with the RRR-, YYY- and YRY
functions cannot be deduced from each other.

2.2. METHOD

This method generalizes the previous one (Arqués & Michel, 1987b) to any tri-
nucleotide on the purine/pyrimidine alphabet.

Let F be a gene population with n(F) DNA sequences. Let s be a sequence in F
with a length /(s). Let T be a trinucleotide on the alphabet {R, Y}, R=purine=
adenine or guanine, Y= pyrimidine =cytosine or thymine, i.e. T={RRR, ..., YYY}.
Let the i-motif m(T)=T(N),T, N=R or Y and ie[0,99], be two identical tri-
nucleotides T separated by any i bases N. For each s of F, the counter ¢(T'; s) counts
the occurrences of m,(T) in 5. In order to count the m;(T) occurrences in the same
conditions for all i, only the first /(s)— 104 [=/(s)—(99+6)+ 1] bases of s are
examined [99 + 6 is the maximal length of m,(T")]. The occurrence probability o(T; s)
of m(T) for s, is then equal to ¢(T; s)/[l(s) — 104], i.e. the ratio of the counter by
the total number of current bases read. The occurrence probability p(T; F) of m(T)
for F, is finally equal to [}, _, 0{T; s)]/n(F). For a trinucleotide T and a population
F, the autocorrelation function i—p(T;, F) giving the mean occurrence probability that
T occurs i bases after itself, is noted T-function and is represented as a curve C(T'; F).
In order to have a sufficient number of me(T") occurrences, the T-function is applied
to sequences having a minimal length of 250 bases.

The populations F of eukaryotic non-coding genes analysed here are: the 5’ eukary-
otic regions F=NS5EUK (405 sequences, 697 kb), the eukaryotic introns F=NIEUK
(1016 sequences, 1181 kb) and the 3" eukaryotic regions F'=N3EUK (615 sequences,
1023 kb). They are obtained from the release 23 of the EMBL Nucleotide Sequence
Data Library in the same way as previous studies (see for example, Arqués & Michel,
1990a for a description of data acquisitions). The T-function uses the trinucleotides
T=RRR and T=YYY. The curve C(T; F) is represented as follows: (i) the abscissa
shows the number i of bases N between 2 RRR, or 2 YYY, by varying i between 0
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F1G. 1. Identification of new non-random statistical properties common to different populations of
eukaryotic non-coding genes: large exponential decrease with a short linear decrease and local maxima
for i=3[6] (i=3, 9, etc). The horizontal axis represents the number 7, i[0, 99}, of any bases N between
two identical trinucleotides T, T=RRR or T=YYY, ie. the i-motif RRR(N),RRR or the i-motif
YYY(N);YYY. The vertical axis represents the T-function, i.e. the curve C(T; F) shows the occurrence
probability of the i-motif RRR(N);,RRR or YYY(N),YYY in the following populations F (see section
2.2). (a) Curve C(T'= RRR; F=NSEUK) showing the occurrence probability of the i-motif RRR(N);RRR
in the 5’ eukaryotic regions F=NS5BEUK (local maxima for i=3,9). (b) Curve C(T= YYY; F=N5EUK)
showing the occurrence probability of the i-motif YYY(N),YYY in the 5’ eukaryotic regions F=NSEUK
(local maxima for i=3,9, 15, 21, 27). (¢) Curve C(T'=RRR; F=NIEUK) showing the occurrence prob-
ability of the i-motif RRR(N)RRR in the eukaryotic introns F=NIEUK (local maxima for i=
3,9, 15,21, 27). (d) Curve C(T=YYY; F=NIEUK) showing the occurrence probability of the i-motif
YYY(N),YYY in the eukaryotic introns F=NIEUK (local maxima for i=3,9, 15, 21, 27). (¢) Curve
C(T=RRR; F=N3EUK) showing the occurrence probability of the i-motif RRR(N),RRR in the 3’
eukaryotic regions F=N3EUK (local maxima for i=3, 9). (f) Curve C(T'= YYY; F=N3EUK) showing
the occurrence probability of the i-motif YYY(N),YYY in the 3' eukaryotic regions F=N3EUK (local
maxima for i=3, 9, 15, 21, 27).

and 99; (ii) the ordinate gives the mean occurrence probability of RRR(N),RRR, or
of YYY(N),YYY, in a gene population F.

2.3. RESULTS

The T-function is applied in:
the 5 eukaryotic regions F=NS5SEUK with 7= RRR [curve C(RRR; NSEUK):
Fig. I(a)] and T=YYY [curve C(YYY; NSEUK): Fig. 1(b)];
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the eukaryotic introns F=NIEUK with T=RRR [curve C(RRR; NIEUK):
Fig. 1(c)] and T= YYY [curve C(YYY; NIEUK): Fig. 1(d)];

the 3’ eukaryotic regions F=N3EUK with T=RRR [curve C(RRR; N3EUK):
Fig. 1(e)] and T= YYY [curve C(YYY; N3EUK): Fig. I(f)].

A curve with 100 different points can lead to 100! (10"**) possible curve shapes.
Unexpectedly, these six curves, obtained with two “independent” trinucleotides
(RRR and YYY) and with three “independent” gene populations (NSEUK, NIEUK
and N3EUK), have the same main non-random properties: a large decreasing curve
(from i=0 to 99) of “exponential” type with a short linear decrease (from i=0 to
8). This exponential decrease has local maxima for i=3[6] (i=3+6n, n integer): a
peak at ;=3 having the second highest value among the 100 points; small peaks at
i=9, 15, 21 and 27 {obvious in Fig. I{b)].

Note: These curves settle at a long distance of 7 [for i> 50 except for the Fig. 1(c)]
to a variation around a constant value which is closed to the square of the trinucleo-
tide frequency:

the constant value in Fig. 1(a) is ~2-54 x 107> and the RRR frequency in NSEUK
is equal to 01579, i.e. its square=2-49 x 107%;

the constant value in Fig. 1(b) is ~2-68 x 107* and the YYY frequency in NSEUK
is equal to 0-1609, i.e. its square=2-59 x 107%;

the constant value in Fig. 1(c) is ~2:68 x 1072 and the RRR frequency in NIEUK
is equal to 0-1657, i.e. its square=2-75x 107%;

the constant value in Fig. 1(d) is ~3:08 x 107 and the YYY frequency in NIEUK
is equal to 01710, i.e. its square=2:92 x 107%;

the constant value in Fig. 1(e) is ~2-50 x 107 and the RRR frequency in N3JEUK
is equal to 0-1453, i.e. its square=2-11 X 1072,

the constant value in Fig. 1(f) is ~3:01 x 107> and the YYY frequency in N3EUK

is equal to 0-1785, i.e. its square=3-19 X 1072,
Although this relation is less significant in Fig. 1(e), these six curves tend to be a
constant function of i at a long distance of i (uniform curve) only depending on the
frequency (its square) of the trinucleotide in the gene population.'In other words,
the curve shape is random at a long distance of i.

The shape of these six curves produced by these three properties is new and has
never been observed with the YR Y-function in any gene populations analysed so far,
in particular the YR Y-function in NSEUK, NIEUK and N3EUK leads to a period-
icity modulo 2 (Arqués & Michel, 1990a). However, the local maxima for i=3[6]
identified with the RRR- and YY Y-functions although weak, as they are hidden by
the large exponential decrease, are in fact an important property because the YRY-
function in NSEUK shows a periodicity modulo 2 associated with four subcurves
modulo 6 whose one is for i=3[6]. The biological meaning of the local maxima for
i=3[6] (pattern observed with the three RRR-, YYY- and YRY functions) is
presented in the Discussion.

Finally, owing to the law of large numbers (Arqués & Michel, 19905: 752, Section
2.3.3), the curve C(T'; F) obtained with populations F made of several hundreds of
genes and for any trinucleotide 7, keeps the main and non-random statistical proper-
ties (for example, periodicities, a decrease, maximal and minimal values, etc), even
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if new genes are further available in the populations F. For example, since the tenth
release of the EMBL database, the periodicities and the preferential occurrence of
the motif YRY(N)sYRY were observed in each new release. Therefore, all the non-
random properties identified at the gene population level are important as they are
stable from a statistical point of view. Thus, the next research step is naturally their
understanding with a simulation model (the mathematical and biological reasons of
these two steps are explained in Arqués & Michel, 19905).

3. An Oligonucleotide Mixing Model

3.1. INTRODUCTION

The problem which arises in this section is whether the three new non-random
properties identified with the RRR- and YYY-functions in eukaryotic non-coding
genes, i.e. the large exponential decrease with a short linear decrease and local max-
ima for i=3[6], can also be simulated by an independent mixing of oligonucleotides.
This problem, as in the case of the YRY-function in Arqués & Michel (19906), is
divided into two sub-problems: the identification of oligonucleotides and the determi-
nation of probabilities associated with the oligonucleotides. This combinatorial prob-
lem may not have any solution as there are 10'*® possible curve shapes for a curve
with 100 different points and as a real curve could not have been simulated by mixing
oligonucleotides, i.e. the concept of an oligonucleotide mixing is false. However, the
subcurve modulo 6 for i=3[6] with the YRY-function was able to be simulated by
an independent mixing of oligonucleotides (Arqués & Michel, 19905b), then the local
maxima for i=3[6] with the RRR- and YYY-functions together with the two other
properties should also be simulated by an independent mixing of oligonucleotides.
With the help of some previous rules and using the calculus power of the computer,
several hundreds of simulation models were analysed by varying the type, the number
and the probability of oligonucleotides. We present now a summary of the main
research steps which lead to a solution of this problem.

3.2. METHOD

3.2.1. Creation of a simulated population

Let an oligonucleotide O be a word of a few ( <ten) letters on the alphabet {R, Y}.
Let a set & of n oligonucleotides O;, 1 <i<n, be associated with a set 2 of n
probabilities p;, 3, _,_, pi= 1. Then, a simulated population S(&, 2) of sequences is
created by mixing these oligonucleotides O; according to an independent concatena-
tion depending only on the probabilities p; attached to these oligonucleotides O;. In
order to obtain significant statistical results, this simulated population is in fact
constituted of 500 sequences of a 2000 base length and generated in order to have
the same percentage of R and Y in any sequence of the simulated population. The
computations obtained with such a sample of 1 million bases are precise, i.e. there
are no random fluctuations in the calculus of probabilities: a sample having 200
sequences of a 1000 base length leads to similar results.
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3.2.2. Choice of the set (&, P) of “probabilized oligonucleotides’

The set (&, ) of “probabilized oligonucleotides”, i.e. the oligonucleotides and
their associated probabilities, will be chosen so that the T-function, 7= RRR or T=
YYY, in the simulated population S(&, Z) leads to a curve C(T; S(&, 2)) called
simulated, having the statistical properties of the real curves. Such a simulated curve
can be compared with a real one as both result from the same function definition.

The first research step, as mentioned in section 3.1, is to find a set . of oligonucleo-
tides leading to the properties observed in the real curves. As the real curves are
identical using both the RRR- and YY7Y-functions, the oligonucleotides O; will be
complementary in R and Y. This strong constraint in the choice of oligonucleotides
also leads to sequences with the same percentage of R and Y.

The second research step is then to obtain the best curve shape by scanning in the
range [0, 1] and with a step of 0-01, all the probabilities p; attached to the oligonucleo-
tides O, of the set . previously identified, the oligonucleotides O; being independently
mixed.

3.3. RESULTS

3.3.1. Identification of two oligonucleotides leading to the short linear decrease

The simulation of a decrease, linear or exponential, short or large, is a new problem

as the reasoning used to simulate the periodicities (Arqués & Michel, 19805) cannot
be applied to it. The study to simulate a linear decrease led to the identification of
the following rule:
Let the two oligonucleotides O, (resp. 0,) be a series of R (resp. ¥) of the same
length /, i.e. O =R and 0,=Y', then the independent mixing of O, and O, with
equiprobabilities (0-5) leads to a simulated curve C(T'; S(%, 2)), T=RRR or T=
YYY and (&, 2)={(R}, 0:5), (Y',0-5)}, with the following properties:

a quasi-linear decrease for 0<i</~1;

a periodicity modulo [ for i>/—1.

These results obtained by simulation can also be proved by an exact calculus of the
occurrence probability p; of the T-function in the simulated population S(.%, 2) (see
Appendix).

The two curves C(RRR; §(&, ?)) and C(YYY; S(&, #)) are identical as O, and
0, are complementary in R and Y and associated with the same probability.

For the simulation of the short linear decrease from i=0 to 8, this rule is applied
with /=8. Indeed, the independent mixing of O, = R® and 0, = Y*® with equiprobabili-
ties leads to a simulated curve C(T'; S(&, 2)) [Fig. 2(a)], T=RRR or T=YYY and
(&, 2)={(R’,0:5), (Y*,0-5)}, with the following properties [Fig. 2(a) represents
the two identical curves C(RRR; S(&, #)) and C(YYY; S(¥, P)]:

a short linear decrease for 0<i<7;

a periodicity modulo 8 for i>7.

The simulated curve [Fig. 2(a)] is not yet similar to the six real curves as:

there is a periodicity modulo §;

the local maxima for i=3[6] and the large exponential decrease are missing;
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the highest probability in the simulated curve (0-344) is ten times greater than the
highest probability in a real curve. )
These three facts explain that this simulation is still incomplete.

3.3.2. Identification of two additional oligonucleotides leading to the short linear
decrease and to the local maxima for i=3[6]

The question here is to identify two complementary oligonucleotides leading to
the local maxima for /=3[6] without destroying the short linear decrease. The local
maxima for /= 3[6] is a result of the preferential occurrence of the trinucleotide RRR
(or YYY) 3,9, etc, bases after itself (see Arqués & Michel, 19805 for a reasoning
with periodicities). With the two additional oligonucleotides O;= RRRYRYRRR and
O04=YYYRYRYYY, there is a preferential occurrence of RRR three bases after itself
in Os, of YYY three bases after itself in O,. The independent mixing of the four
oligonucleotides O, 0,, O, and O, with equiprobabilities (0-25) leads to a simulated
curve C(T; S(&, 2)) [Fig. 2(b)], T=RRR or T=YYY and (¥, )= {(R®, 25%),
(Y® 25%), (RRRYRYRRR, 25%), (YYYRYRYYY, 25%)}, with a short linear
decrease and local maxima for /=3[6], the periodicity modulo 8 being destroyed.
The two curves C(RRR; S(¥, #)) and C(YYY; S(&, #)) are identical as O; and
O, are still complementary in R and Y and still associated with the same probability.
Surprisingly, O; and O, belong to an interesting and important class of oligonucleo-
tides (see Discussion).

A scanning of probabilities of these four oligonucleotides can give a better curve
shape (data not shown), for example, with a peak at i=3 having the second highest
value (i.e. greater than the value at i=1), as in the six real curves. Nevertheless, this
scanning cannot lead to an exponential decrease. Furthermore, the highest probabil-
ity in the simulated curve (0-175) is still five times greater than the highest probability
in a real curve.

These two facts explain that this simulation is slightly incomplete.

3.3.3. A simulated curve similar to the six real curves

We first tried to understand the large exponential decrease in terms of oligonucleo-
tides but we could not find a solution after testing several hundreds of simulations.
In fact, the large exponential decrease is related to large alternating R/Y series,
for example, (RY)so. Indeed, with the independent mixing of the previous four
oligonucleotides R®, ¥, RRRYRYRRR, YYYRYRYYY and (RY)so, the best curve
shape [Fig. 2(c)] obtained with a scanning of probabilities has the three non-random
properties observed in the six real curves:

the large exponential decrease;

the short linear decrease;

the local maxima for /=3[6] with a peak at /=3 having the second highest value.
Note: The scanning is associated with an algorithm of curve-form recognition (not
explained here) in order to compare a simulated curve with a real one and to select
automatically the best simulated curve among the 10 000 possible solutions [step =
0-01, prob(0,) = prob(0,), prob(0;) = prob(O,), prob((RY)sy) =complement to 1].
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FiG. 2. Simulation of new non-random statistical properties common to different populations of
eukaryotic non-coding genes [identified in Fig. 1(a)-(f)]. The horizontal axis represents the number
i, ie[0, 99], of any bases N between two identical trinucleotides T, T=RRR or T'=YYY, i.e. the i-motif
RRR(N);RRR or the i-motif YYY(N),YYY. The vertical axis represents the T-function, i.e. the simulated
curve C(T; S(¥, #)) shows the occurrence probability of the i-motif RRR(N),RRR or YYY(N),YYY in
the simulated population S(&, 2) (see section 3.2). (a) Simulation of the short linear decrease. Simulated
curve C(T=RRR; S(&, ?)) showing the occurrence probability of the i-motif RRR(N),RRR in the
simulated population S(%, 2) created by an independent mixing of R® and ¥® with the following probabil-
ities: (&, 2) = {(R®, 50%), (Y, 50%)}. The simulated curve C(T=YYY; S(&, 2)) is identical. (b) Simu-
lation of the short linear decrease and the local maxima for i=3[6] (i=3, 9, etc). Simulated curve C(T=
RRR; 8(&, 2)) showing the occurrence probability of the i-motif RRR(N);RRR in the simulated popula-
tion S(&, 2) created by an independent mixing of R®, Y*, RRRYRYRRR and YYYRYRYYY with the
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The large alternating R/Y series does not correspond to an oligonucleotide (word
less than ten letters) but represents the genetic information not encoded by RRR
and YYY and which must be considered in the simulation. Therefore, any series
not containing RRR and YYY could have been used and the two curves
C(RRR; S(&, 7)) and C(YYY; S(¥, #)) are identical.

The simulated curve [Fig. 2(c)] is not completely identical with the six real curves
as:

the six real curves differ with non-significant patterns;

the simulated curve [Fig. 2(c)] at a long distance of i has probabilities (for example,
1-06 x 107 at i=99) lower than the probabilities observed in the real curves [Fig.
1(a)—(f}]. In Arqués & Michel (1990b), we have proved that the problem of frequency
level of a simulated curve (either non-random or constant function of i) is not related
to the oligonucleotide mixing process, but to another genetic process, precisely to
the random base mutation process (see Discussion for details).

The understanding of a curve shape with properties is a known difficult problem of
pattern recognition which cannot be solved by only a few properties.

The simple model developed here cannot completely simulate the genetic reality
depending on a great number of factors, in the same way that the first terms of the
development of a function in series cannot reveal the totality of the function.

Nevertheless, this simulated curve has the significant patterns of the six real curves.
Therefore, this simulation model is strongly correlated with the reality observed in
eukaryotic non-coding genes.

4. Discussion

The RRR- and YYY-functions in the 5’ regions, introns and in the 3’ regions of
eukaryotes lead to six “independent” curves having the same three non-random
properties: a short linear decrease, local maxima for i=3[6] and a large exponential
decrease [Fig. 1(a)-(f)]. As with the periodicities modulo 2, 3 and the preferential
occurrence of the motif YRY(N)sYRY, these new properties again demonstrate that
the nucleotide distribution in genes is not random and can be simulated: a curve
which would have been random could, obviously, not have been simulated. Surpris-
ingly, the local maxima for /=3[6] found with the RRR- and YYY-functions have
already been identified with the YR Y-function showing in the 5' eukaryotic regions
four subcurves modulo 6 for i=3[6], i=1, 5[6], i=0{6] and i=2, 4[6] (Arqués &
Michel, 19905). Among these four subcurves, the one for i=3[6] has the strongest

following probabilities: (&, 2) = {(R®, 25%), (Y*, 25%), (RRRYRYRRR, 25%), (YYYRYRYYY, 25%)}.
The simulated curve C(T=YYY,; S(&, #)) is identical. (c) Simulation of the short linear decrease, the
local maxima for i=3[6] and the large exponential decrease [identified in Fig. 1(a)-(f)}]. Simulated curve
C(T=RRR; S(¥, ?)) showing the occurrence probability of the i-motif RRR(N);RRR
in the simulated population S(&, #) created by an independent mixing of R%, ¥*, RRRYRYRRR,
YYYRYRYYY and (RY)s, with the following probabilities: (&, 2)={(R%, 15%), (Y%, 15%),
(RRRYRYRRR, 25%), (YYYRYRYYY,25%), ((RY)so, 20%)}. The simulated curve C(T=YYY;
S(&, 2)) is identical.
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occurrence probability. This result may explain why the local maxima for i= 3[6] are
conserved in eukaryotic non-coding genes. Finally, this observation is in agreement
with the property 4 and the final remark in Arqués & Michel (1990b: 766, lines 10-
13 and 771, lines 9-15) stating that there are a few “universal” non-random patterns
in genes (i.e. whatever the T-function) from an independent mixing of a few types
of oligonucleotides.

The oligonucleotide mixing model developed in section 3 simulates these three
non-random properties by an independent mixing of the four oligonucleotides R?,
Y®, RRRYRYRRR, YYYRYRYYY and large alternating R/Y series [Fig. 2(c)]. The
short linear decrease is a result of R® and Y?® the local maxima for i= 3[6], of
RRRYRYRRR and YYYRYRYYY, and the large exponential decrease, of large
alternating R/Y series. The large exponential decrease represents all the genetic
information not encoded by RRR and YYY but containing, in particular, the three
oligonucleotides previously identified YRYRYR, YRYYRY and YR Y(N)s (Arqués
& Michel, 1990b). Unexpectedly, the two oligonucleotides RRRYRYRRR and
YYYRYRYYY belong to the oligonucleotide class of YRY(N)s: RRRYRYRRR is
a particular specification of NNNYRYNNN and YYYRYRYYY, a particular specifi-
cation of NNYRYNNNN (or of NNNNYRYNN). This result agrees with property
2 in Arqués & Michel (1990b: 765, Section 3.3.6) demonstrating that: “The six bases
N of the oligonucleotide YRY(N)s have not to be specified by YRY and by RYR.
Obviously, specification by motifs different from YRY and RYR could be necessary
for a model more general which also considers trinucleotides (e.g. RRR) different
from YRY”. Therefore, the two oligonucleotides RRRYRYRRR and YYYRYRYYY
could explain a genetic information encoding simultaneously by RRR, YYY and
YRY, i.e. they could explain non-random properties identified with the RRR-, YY Y-,
and YRY-functions. We are currently testing this hypothesis with a model which
independently mixes the six oligonucleotides R®, Y, RRRYRYRRR, YYYRYRYYY,
YRYRYR and YRYYRY in order to simulate, with a unique model, the non-random
properties observed with the RRR-, YYY- and YR Y-functions. The choice of these
six oligonucleotides is probably not the best one as they are not completely comple-
mentary. Nevertheless, it is essential to begin with simple independent models in
order to obtain rules which can be used afterwards to develop more general models
containing the simple models.

The simulated curve [Fig. 2(c)] has the non-random statistical properties of the
six real curves, however, with a frequency level difference. Therefore, to have a
complete model, a random base mutation process must be added after the oligo-
nucleotide mixing process as with the previous model mixing the three oligonucleo-
tides YRYRYR, YRYYRY and YRY(N)s (Arqués & Michel, 19905). Indeed, while
the mixing process acts on the relative values in the simulated curves (i.e. acts on the
curve shape and leads to non-random properties such as periodicities), the mutation
process acts on the absolute values in the simulated curves as follows: it decreases
the values greater than 1/64 (1/64 is the constant value of a population with the
same frequency of R and ¥) and increases the values less than 1/64. Random
mutations, which are noise in terms of signal processing, have no action on the curve
shape. As this random process cannot lead to non-random properties, mutations can
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only occur after the mixing of oligonucleotides (see the proposed model of gene
evolution below). This paper mainly deals with the mixing process which is a difficult
problem owing to its great complexity: a solution is obtained not only if the good
oligonucleotides are identified but also if the right probabilities are determined:
modifying the length, a base or the probability of an oligonucleotide destroys the
non-random properties. In fact, before having the mathematical reasons (described
in sections 3.3.1, 3.3.2 and 3.3.3) for the existence of a solution with an independent
mixing, several hundreds of Markov mixing models of oligonucleotides were first
tested.

Finally, a simple model of gene evolution can be deduced from these results (Fig.
3). First, an independent mixing of a few types of primitive oligonucleotides led to
the formation of primitive genes (step 1 in Fig. 3). So far, six oligonucleotides have
been identified for this step: R®, Y®, RRRYRYRRR, YYYRYRYYY, YRYRYR and
YRYYRY. Then, random nucleotide processes (mainly mutations) in these primitive
genes led to the actual genes and their diversity (step 2 in Fig. 3).

We thank Dr Nouchine Soltanifar and the referee for their advice.
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APPENDIX

The occurrence probability p; of the T-function in the simulated population
S(&,2), T=RRR or T=YYY and (¥, #)={(R,05), (Y',0-5)}, can be exactly
determined by formulae.

1
— (r—2)*—r (r=2)*—r—1
Pi“l > 2 + D 2
I integer /he[l,/—2) and hinteger/hell, I—2] and
h+2+iel0, /~3] modulo / h+2+iefl~2,1—1]} modulo/
+ Z 2(r~3)+—r+ z 2(r—3)*{——r—l:|
hinteger/he[i~1,1] and hinteger/hell—1, 1] and
h+2+ie{0, /~3] modulo / h+2+ie[l—2,1—1] modulo/

with the following notations:
r=1+41Int [(h+2+7i)/I], (Integer part)
x* =max (x, 0)

[a, b] modulo /is the union of the ranges | [a+kl, b+kl 1.
k30

For i>[—1, the formulae p; is invariant for i values congruent modulo /.




